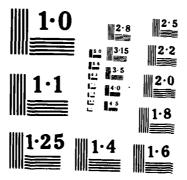
AD-A169 896 NOTE ON A CHARACTERIZATION OF EXPONENTIAL DISTRIBUTIONS 1/1
(U) MARYLAND UNIV COLLEGE PARK DEPT OF MANAGEMENT SCIENCES AND STATISTICS 5 KOTA ET AL. JUL 86
UNCLASSIFIED UN/MSS-86/4 N80014-84-K-0301 F/G 12/1 NL



MERCENSESSE SERVEDBRIN HERBERGER | COSCUS | KOSSSOCIA

RECENT MANDERS NORMAN RECORDED MANDERS NOW

Secretary proposed proposed proposed proposed by

Note on a characterization of exponential distributions

S. Kotz,
University of Maryland*)
F.W. Steutel,
Eindhoven University of Technology**)

JULY 1986

DTIC ELECTE JUL 1 7 1986

ABSTRACT

Let U be uniformly distributed on (0.1) and let Y and $Y' \stackrel{d}{=} Y$ be random vectors with nonnegative components. U.Y and Y' independent. It is shown that the relation $Y \stackrel{d}{=} U(Y+Y')$ is satisfied if and only if the components of Y are multiples of a single exponentially distributed random variable.

1. One-dimensional case

In the solution to problem 159 in [3] the following question is answered. Let $U, Y^{(1)}$ and $Y^{(2)}$ be independent random variables, U uniformly distributed on $(0,1), Y^{(1)}$ and $Y^{(2)}$ distributed as Y. For what distributions of Y is it true that

(1)
$$Y \stackrel{d}{=} U(Y^{(1)} + Y^{(2)})$$

There is a two-parameter family of solutions (cf. [3]), but under the additional assumption that Y is nonnegative, (1) characterizes the exponential distributions. We state this result as a proposition, and give a proof along the lines of the proof in [3].

<u>Proposition 1.</u> Let $Y \ge o$ with probability 1 and let Y satisfy condition (1). Then Y has an exponential distribution (possibly concentrated at zero).

<u>Proof</u> If ϕ denotes the Laplace-Stieltjes transform (LST) of the distribution of Y, i.e. $\phi(s) = E \exp(-sY)$, then (1) is equivalent to

(2)
$$\phi(s) = \int_0^1 \phi^2(us) du = \frac{1}{s} \int_0^s \phi^2(t) dt$$
.

Since ϕ and ϕ^2 are LST's, they are differentiable for s > 0. Differentiation of (2) yields

^{*)} Postal address: College of Business and Management, University of Maryland, College Park, Maryland 20742.

ee) Postal address: Department of Mathematics and Computing Science, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.

(3)
$$s\phi'(s) + \phi(s) = \phi^2(s)$$
.

Substitution of $\phi = (f+1)^{-1}$ leads to

$$f'(s)/f(s) = 1/s$$

with solution f(s) = as and so

$$(4) \quad \phi(s) = \frac{1}{1+as} \ .$$

where $a \ge 0$. This proves the proposition

Accession For
NTIS GRAVI
DIIC IAB
Un alreunced
ortion July
Ву
Distribution/
Availability Codes
Avail and/or
Dist Special
A-1
Z

П

In exactly the same way the following generalization can be proved.

<u>Proposition 2.</u> If $U, Y^{(1)}, \ldots, Y^{(N)}$ are independent, U uniformly distributed on (0,1) and the $Y^{(I)}$ distributed as Y, then

(5)
$$Y \stackrel{d}{=} U(Y^{(1)} + ... + Y^{(N+1)})$$

if and only if the LST ϕ_N of Y is of the form

(6)
$$\phi_N(s) = \frac{1}{1+a \cdot s^{1/N}}$$

where $a \ge o$.

Remark. Since $\exp(-s^{1/N})$ is an infinitely divisible (even stable; see [1], p. 448) LST it follows from Theorem 2 in [4] that ϕ_N in (6) is indeed the LST of a (infinitely divisible) probability distribution having no moments, of course. One can even make N a continuous variable: $S(1) \stackrel{d}{=} U S(t+1)$, where $S(\cdot)$ is a process with nonnegative stationary and independent increments. Then S(1) must have an LST of the form $(1+a s^{1/t})^{-1}$ with t>0.

An other generalization is considered in the next section.

2 Multi-dimensional case

Now let Y be an n-dimensional random vector with nonnegative components:

$$Y = (Y_1, \ldots, Y_n) .$$

and as before let $U, Y^{(1)}$ and $Y^{(2)}$ be independent with U uniform on (0,1) and $Y^{(1)}$ and $Y^{(2)}$ distributed as Y. Now let

$$Y \stackrel{d}{=} U (Y^{(1)} + Y^{(2)}).$$

where addition is component-wise, and let the n-dimensional LST ϕ be defined by

(7)
$$\phi(s_1,\ldots,s_n) = E \exp\left[-\sum_{j=1}^n s_j Y_j\right].$$

Then in exactly the same way as in (2) we have

$$\phi(s_1,\ldots,s_n)=\int_0^1\phi^2(us_1,\ldots,us_n)du.$$

or putting $s_i = \alpha_i s$.

$$s\phi(\alpha_1 s,\ldots,\alpha_n s) = \int_0^s \phi^2(\alpha_1 t,\ldots,\alpha_n t) dt.$$

Writing $\phi(\alpha_1 s_1, \dots, \alpha_n s) = \phi_{\alpha}(s)$ for all $\alpha \in \mathbb{R}^n_+$ we obtain

$$s\phi_{\alpha}(s) = \int_0^s \phi_{\alpha}^2(t)dt$$
.

the same equation as (2). It follows that for all $\alpha \in \mathbb{R}_+^n$ We have

(8)
$$\phi_{\alpha}(s) = \phi(\alpha_1 s, \ldots, \alpha_n s) = (1+a(\alpha)s)^{-1}$$

where $a(\alpha) = a(\alpha_1, \dots, \alpha_n)$ by the definition of ϕ_{α} satisfies

(9)
$$a(s\alpha_1,\ldots,s\alpha_n)=s\ a(\alpha_1,\ldots,\alpha_n).$$

i.e. $a(\alpha)$ is homogeneous of degree one. We are now ready to prove

Proposition 3. A random vector $Y = (Y_1, ..., Y_n)$ with $Y^j \ge 0$ (j = 1, ..., n) satisfies

(10)
$$Y \stackrel{d}{=} U(Y^{(1)} + Y^{(2)})$$

with $U, Y^{(1)}$ and $Y^{(2)}$ independent, U uniform on (0.1) and $Y^{(1)} \stackrel{d}{=} Y^{(2)} \stackrel{d}{=} Y$ if and only if the LST ϕ of Y is of the form

(11)
$$\phi(s_1,\ldots,s_n) = \frac{1}{1+a_1s_1+\cdots+a_ns_n}$$

where $a_1 \ge 0, \ldots, a_n \ge 0$.

<u>Proof.</u> From (7) and (8) with $s_i = \alpha_i s$ and (9) it follows that for all $(\alpha_1, \ldots, \alpha_n) \in \mathbb{R}_+^n$

$$(12) \quad \alpha_1 Y_1 + \cdots + \alpha_n Y_n \stackrel{d}{=} a(\alpha_1, \ldots, \alpha_n) X_n$$

where X is exponentially distributed with expectation one and Y_1, \ldots, Y_n are exponential with expectations $a(1,0,\ldots,0),\ldots,a(0,\ldots,0.1)$. Taking expectations in (11) we obtain

(13)
$$\alpha_1 a(1,0,\ldots,0) + \cdots + \alpha_n a(0,\ldots,0,1) = a(\alpha_1,\ldots,\alpha_n).$$

If we put $a(1,0,\ldots,0)=a_1,\ldots,a(0,\ldots,0,1)=a_n$, then (11) follows from (8) and (13).

Remark 1. From proposition 3 it follows that the only random vectors $Y = (Y_1, \ldots, Y_n)$ satisfying (10) are of the from

$$Y = (a_1 X, \ldots, a_n X).$$

where X is an exponentially distributed random variable with expectation one. This means that Y has a (singular) exponential distribution concentrated on the ray with direction (a_1, \ldots, a_n) through the origin. So, none of the classical multivariate distributions, such as described in [2] satisfy (10).

Remark 2. One could also generalize (5) to n-dimensional vectors; this leads to results similar to proposition 3.

Remark 3. It the condition $Y_1 \ge 0, ..., Y_n \ge 0$ is dropped than more general solutions then (11) are possible. For n = 2, for instance, (10) is satisfied for Y with a characteristic function of the form

$$\Psi(t_1,t_2) = (1 + a_0 \sqrt{t_1^2 + t_1^2} - a_1 i t_1 - a_2 i t_2)^{-1}.$$

with $a_0 \ge 0$, a_1 and a_2 real. A similar situation occurs for n = 1 (cf. [3]).

References

- [1] Feller, W. (1971) An introduction probability theory and its applications, vol. 2. Wiley, New York, etc.
- [2] Johnson, N.L. and Kotz, S. (1972)

 Distributions in Statistics: Continuous Multivariate Distributions, Wiley, New York,
- [3] Problem Section (1985). Statistica Neerlandica 39, 57-58.
- [4] Steutel, F.W. (1968) A class of infinitely divisible mixtures. Ann. Math. Statist. 39, 1153-1158.

UNCLASSIFIED

CLASSIFICA		

REPORT DOCUMENTATION PAGE									
TA REPORT SECURITY CLASSIFICATION UNCLASSIFIED	16 RESTRICTIVE MARKINGS								
2a SECURITY CLASSIFICATION AUTHORITY	3 DISTRIBUTION / AVAILABILITY OF REPORT								
26 DECLASSIFICATION DOWNGRADING SCHEDU									
4 PERFORMING ORGANIZATION REPORT NUMBER(S)		5 MONITORING ORGANIZATION REPORT NUMBER(S)							
UM MSS /86/4									
5a NAME OF PERFORMING ORGANIZATION University of Maryland	7a NAME OF MONITORING ORGANIZATION Office of Naval Research								
60 ADDRESS (City State, and ZIP Code) Dep't. of Management and University of Haryland College Park, Md. 20742	7b ADDRESS (City, State, and ZIP Code)								
33 NAVE OF FUNDING SPONSORING SEGANIZATION CNR	8b OFFICE SYMBOL (If applicable)	9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER NCOC14-84-K-0301							
Stat. and Probability Pr	Comment Comment	10 SOURCE OF FUNDING NUMBERS							
Cffice of Naval Research Arlington, Va. 22217	PROGRAM ELEMENT NO	PROJECT NO	TASK NO	WORK UNIT ACCESSION NO					
TLE (Include Security Classification)			L	<u></u>					
Note on a characterization of exponential distributions									
12 PARENAL MARTORS									
TOTT Samuel and Steutel 13a TYPE OF REPORT 13b TIME CO		4 DATE OF REPO	RT (Year Month I	Day) 15 PAG	SE COUNT				
technical 13b TIME COVERED 14 DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT technical FROM 9/85 to 8/86 July 1986 4									
16 SUPPLEMENTARY NOTATION									
FELD GROUP SUB-GROUP	18 SUBJECT TERMS (C exponential								
	Laplace-Stie	iljes trar	isiorm; in	linite (lvisibility				
ABSTRACT (Continue on reverse if necessary Let 0 be uniformly	and identify by block no	umber)	ic let v o	na vidi	/				
random vectors with nonn	egative compo	nents. II.	Y and Y!	independ	ient It				
is shown that the relation Y \$U(Y+Y') is satisfied it and only if the									
components of Y are multiples of a single exponentially distributed random variable.									
10 DISTRIBUTION AVAILABILITY OF ABSTRACT ACLASSIFIED UNLIMITED SAME AS I	21 ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED								
TO MYE OF RESPONSIBLE NOIVIOUAL	RPT DTIC USERS	226 TECEPHONE (301 454-6	Include Area Code 요아도) 22C OFFICE	SYMBOL				
DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS BAGE									

All other editions are obsolete

UNCLASSIFIED

DESCRIPT TOTAL CONTRACTOR OF THE PROPERTY OF THE PARTY OF